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Parametric Uncertainty Modeling
Motivation:

* Robust Control Theory & Tools
- Required Uncertainty Model Structure:

-~ Separated P-A Form: n
- Com%utatlonal Efficiency Depends on —> P

imension of A Block
—&  Minimal P-A Model Desired:

» Practical Robust Control Applications
- P-A Model Difflcult to Form for Real Parameter Variations
- No General Systematic Approach for Minimal P-A Modeling

—» Multidimensional Minimal Realization Problem

= Problem to be Addressed In this Paper

Parametric Uncertainty Modeling (cont)
General Problem Definition:

Glven State Space Model of Uncertain System:
X Alp) B(p) ' x
[$]— c(p) D(p)_’m y

Any Element of A(p), B(p), C(p), D(p) -~ Expllcit Functlon® of p:

Uncertain Parameters: p = [p,, p, -, pa]

i

A(p)x + B{(p)u
Cip)x + D(p)u

Plaw S P £ Py, _>Pi=Pi.+§!?Px.+Ssss"5|'51

Form a P-A Uncertainty Model:

4 A(D) Ya P - Constant Matrices
x . A{5) - Uncertain Parameters
u Pu P2 I;‘I

P21 P2 | A®) = diag(3I, 5L, . . ., Sula)
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Parametric Uncertainty Modeling (cont)

General Problem (cont):

Any Element of A(p), B(p), C(p), D(p) —# Explicit Function* of p

*Explicit Functional Forms: Example:
Linear Function** ayp) = p + P2 &
Muthilinear Function ayp) = p1 + PIP2 %
Rational Function ayp) = * Pade + PPy

PiPs + 2, pg

** Formal Solution by Morton & McAfoos (1985 ACC & CDC)

=» Many Practical Problems:
Muttllinear (Ratlonal, ... )

Objective

Develop: Systematic Method for Obtaining a P-A Model
Given: State-Space Model of a MIMO Uncertain System
Such that:

* Any Element of A(p), B(p), C(p), D(p) Is a Muttilinear Function of p:
a;(p) = p1 + pi;24a,

« The Resulting P-A Model is Minimal (or Near Minimal), 1.e.:
= A®) = dlag(§1;, 81y . .., 81.)
has Minimal Dimension for the Given State-Space Model

Extend: Muiltilinear Results to Rational Case
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General Solution Framework
Block Diagram Perspective:

54(3)
x] __SP) Tx
ul _ 1A(p) B(p)]

AA(B) B4(%)
C{p) D(p) =

Ca8) D,@®)

[*] = SE[X] = (S() + Su®)[X] [‘)’(]

S(p)
E:—.**—" ) fe-Lae
: Pu1 P12 le! I
- P21 P2 |
= > _ X
[§] = Pat] + P us
Y, = Pu [:] + Pnou,
UA = A(a) yA
A(s) = diﬂg( sillv 52]21""5-1ll)

General Solution Framework (cont)
Equating Given & Deslired Models:

Solution of Pz, P12, & P11 Matrices:
AAS)BA(&J

Ca(3)D4(8)

Unknown Matrix Elements Known Matrix Elements
(Function of &'s)

General Solution Requires: Direct Mairix Inversion
(I-a@) Py

= Symbolic Matrix Inversion & Subsequent Solution
Ditficult for Many Practical Problems
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=

Multilinear Solution Framework

AA(S)BA(B)}
CA(3) D,(8)

Known Matrix Elements
Unknown Matrix Elements .y, iiiinear Function of 5's)

Finite Power Serles (Exact Solution):

(I-A@P, )" =T + QG Py) + AP’ + ... +(AG) P

suchthat: [ (AG)P,)™' = 0] = Reguires Special Structure for P11
where: r - Determined by Maximum Crossterm Order In A, B, C, D

Ax(5)B,()
Ca(B)Dy(B)

SA(B) =

] = Py [z+ A(B‘) Py, + (A(8) Pu)z +. ..+ (AB) P,y)" ] A(B)P,;

l "ew
Uncertain Parameter Linear Terms Jncertaln Palramotor Crossmlms

Note: 1.) nth Order Terms 2.) Inverse Terms
— Repeated Parameters — Redefine Parameters
Ex: p? = ppin Ex.: % =B

Uncertainty Modeling Procedure

To Obtain a Minimal (or Near Minimal)
P-A Uncertainty Model:

0. Determine P22 and Extract S,(5):

—— _ [ Atps)  B(po) ] _ {ANB)IBL(®)
% = S(p,) = S.8) =
B - soo = [ A8 Lyl YO {c,,(s)n@)

1. Define A Matrix: A(3) = diag(31,, 8,1, ..., 8,.1,)

Repeated Parameters Only for
nth Order Uncertain Parameters

2. Determine P21 and P12 Using Linear Terms (Morton & McAfoos):
A,,(S)BA(S)l
Ca(3)Dy(3)

f

Known Linear Uncertaln Parameter Terms Only
{No Uncertain Parameter Crossterms)

= [S4®) =
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Modeling Procedure (cont)

3. Determine P11 Using Uncertain Parameter Crossterms:

[

= [S\®) = A‘(S’B"(&] < FimOrder
[Ca(B)Dy(8));,  Crossierms
A ,(8)B (8

= [S,(8)); = A®)B) - séu"u%m
[ Ca(8) D4(8) Crossierms

[S.8)

'AA(S)B@)l Known
-—

th-Order
| Ca(8)Do(5) Crossterms

with Nilpotency Condition Satisfied.

¥ P11 Cannot be Found such that ALL of the above
Equations and Condition are Satisfled:

a.‘ Determine which Parameters Need to be Repeated
b.) Repeat Procedure from Step 1 Augmenting A Matrix

Once P11 has been Determined,
Minimal (or Near Minimal) P-A Model Has Been Found

Example

B(p) =
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Example (cont)

P-A Model Solution:

<.
| W—— |
I

= Pz [:] + P21 u,

Uy |,
(2 [

Y, = Pun ["] + P u 1'
4 u A |:| P11 P12
Uy = AB)Y, Pn Pz
where:
'vatu. 0 0 : ou.tu.z y*‘ 0
o -V, o ' o v.L.a
Pa=| 0 LH VI 0 oL
B o I T N
0 0 1 0 0
Example (cont)
P-A Model Solution (cont):
1oL, 0 0 0L, o0
0 0 -V,V,0 0 0
Pa=1l0o o o o 1 oL,
o o0 0 0 0 0 O
[0 0o o 0 0 0 0]
EAZ 0 0o . 0 0
0 0 0 ospy¥s 0
0 S{. o ! 0 ST,
L A st
0 ZSLGU.L'Q E‘ -5 v-: o - 25[:-0_'.'[:'.
] 0 . 0 ‘m/;
|0 R ° 0 Sy 5o
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Example (cont)
P-A Model Solution (cont):

0 %3 0 0o o o 0
o o 0 0 o f,'_._fn 0
o 0 0 0 0 0 &
Pu=lo o o o o o =y=E
T =
0 0 5.0, s 0 0 0 2 L.,
o 0 0 0 o 0 0
o 0 0 o o o0 o |

A®) = diag [T, T, S 13 8, O, ]

Extension to Rational Case

il - Bl

} = [Pu"} (I - AP;;)" APy,
Ds Py,

(Muttitinear Problem)
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Extension to Rational Case (cont.)

System Equations:

P. P
[*] = Sy,Sp, 3] + Sl BN Ml TR
y le.,, P 21p,

P
Ya = [Py, Pyy]Sp,?! [:‘,] + | Pu—[P, P13, ]Sp,” Pm':l uy
Aoy
U = Ay,
where: Sn,Sp,!' = Sp= [é: g:} = Py
_ AN. BN- -1 _ AD- BD. -
Sh. = [CN. DN.] r 5= Cp, Dp,

Concluding Remarks
- Multilinear Solution Framework

- Solves Multilinear Parameter Case
= Accomodates nth Order and Inverse Terms

- Eliminates Symbolic Matrix Inversion In Computation of P11

= Computationally Tractable for Symbolic Solution
(Symbolic Algebra Tool Required)

- Can be Extended to Rational Parameter Case
= Preliminary Results

» Systematic Procedure for (Near) Minimal P-A Modeling

- Minimallty Is Relative to Given State Space Reallzation

= A Lower Dimansion P-A Model May Exist for Different Reallzation
- (Near) Minimality by Construction

= Minimality may not Always be Assured
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Further Work
- Evaluate/Refine/Generalize Procedure

- Wider Class of Problems
- Multidimensional System Theory

- Automate Modeling Procedure
- Mathematica’Maple
- Output Flles to Matlab

» Apply to HSCT Problems

- Configuration Evaluation
- Control System Analysis & Design
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Parametric Uncertainty Modeling for Application to Robust Control

Christine M. Belcastro
MS 489
NASA Langley Rescarch Center
Hampton, VA 23665

Absiract

Advanced robust control system analysis and design is based
on the availability of an uncertainty description which separates the
uncertain system elements from the nominal system. Although this
modeling structure is relatively straightforward to obtain for multiple
unstructured uncertainties modeled throughout the system, it is difficult
to formulate for many problems involving real parameter variations.
Furthermore, it is difficult to ensure that the uncertainty model is
formulated such that the dimension of the resulting model is minimal.
This paper presents a procedure for obtaining an uncertainty model for
real uncertain parameter problems in which the uncertain parameters
can be represented in a multilinear form. Furthermore, the procedure is
formulated such that the resulting uncertainty model is minimal (or near
minimal) relative to a given state space realization of the system. The
approach is demonstrated for a multivariable third-order example
problem having four uncertain parameters.

1. Intreoduction

Advanced robust contro] system analysis and design is based
on the availability of an uncertainty description which separates the
uncertain system elements from the nominal system. More

ifically, the uncertain system components are contained in a block-
diagonal A matrix, which is connected to the nominal system, P(s),
such that the closed-loop uncertain system is described by a linear
fractional transformation (LFT). The idea of separating the uncertain
part of a system from its nominal part in this manner, for use in robust
control system analysis and design, was first posed by John Doyle (see
[3] and [4]), and the robust control theory associated with this
structured description of uncertainty continues to be an important area
of research. A block diagram of this modeling structure can be
depicted as follows in Figure 1:

Uy Ya

"}

Figure 1. Block Diagram of General Uncertain System

(3] ——

where u contains all external inputs to the system (e.g., disturbances,
control inputs, etc.), y contains all outputs from the system (e.g.,
controlled outputs, measured outputs, etc.) and ua and y, connect the
uncertainties represented by A to the nominal system, P(s). Although
this modeling structure is relatively straightforward to obtain for
mubiple unstructured uncertainties which occur throughout the system,
it is difficult to formulate for many problems involving real parameter
variations. Furthermore, it is difficult to ensure that the uncertainty
model is formulated such that the dimension of the resulting model is
minimal (i.e., the number of repeated parameters in A is minimized).
Although formulating an uncertainty model is a requirement for
utilizing the recently developed robust control analysis and design
techniques mentioned above, very little rescarch has been reported in
the literature which addresses this problem, particularly for the real
parameter uncertainty case. Results to date primarily apply to multiple
uncertain parameters which enter the system model in a linear
functional form, although some work involving nonlinear special cases
have been worked [10]. The results for linear uncertain parameters
were first presented in [8] (Morton & McAfoos, 1983) and [9]
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ME&M Dept.
Drexel University
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Robert Fischl
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(Morton, 1985). A later paper [10] (Steinbuch, et. al., 1991)
summarizes the general uncertainty modeling problem and the results to
date, and presents two simple scalar nonlinear uncertain parameter
examples. However, no solution to the general minimal uncertainty
modeling problem has been found. The objective of this paper is lo
present an important extension to these uncertainty modeling results.
Specifically, a procedure is presented for obtaining a minimal (or near
minimal) uncertainty model (having the form of Figure 1) given the
state space realization of an unccriain system with multiple parametric
uncertainties entering the model in a multilinear functional form. It
should be noted that minimality herc is relative to the given state space
realization. As discussed in [1] and [2] (Belcastro, et: al., 1989 and
1991), the dimension of the uncertainty model (i.e., the dimension of
the A matrix) is dependent on the state space realization of the system.
Thus, one can consider the minimality of an uncertainty model for a
particular state space realization, or one can consider the achievable
minimality of the uncertainty model im:;peclive of the system
realization. In this paper, we present a method of obtaining & minimal
(or near minimal) uncertainty model relative to the given stale space
model of the uncertain system for multiple uncertainties entering the
model in a multilinear functional form. The multilinear framework
significantly reduces the computational complexity involved in
obtaining a solution, as compared to solving the problem directly for
the rational parameter case. Moreover, it can be shown that the
multilinear solution framework can actually be used to solve the
rational parameter case, as well. Thus, it provides a means of
determining an uncertainty model for many difficult problems of
practical interest. .

The paper is organized in the following manner. Section 2
presents a formal problem definition for the general uncertain parameter
case, briefly summarizes results for the special case of linear parametric
uncertainty, and defines the problem to be addressed in this paper.
Section 3 summarizes our results for this defined problem, and Section
4 presents an example problem which demonstrates these results.
Section 5 briefly discusses the application of the multilinear solution
framework to solve the rational uncertain parameter problem, and
concluding remarks are given in Section 6.

2. Parametric Uncertainty Modeling:
broblem Definiti

2.1 General Problem Definition

Consider the state space model of an uncertain system:

Xx=A(P)x+B{p)u, xe R, ue R™ (1a)
y = C(p)x+D()u, ye R> (1b)

where p represents a vector of real uncertain parameters:
p=I[p.pr-.Pm] € R" ()

It is assumed that each entry of the model presented in equation (1)isa
function of the parameters p. For the general rational case considered
in this paper, the uncertain parameters can ap in a rational
multivariate functional form within each element of the system model.
For example, as given in [10] (Steinbuch et. al., 1991), the (ig)th entry
of the A matrix could have the form:
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oy = D1+ P2l + P2?ps
Al](p) - Pl P3 + al p4 (3)

where g, and a, are constants. It should be noted that nth-order terms
are included here because they can be handled within & multilinear
framework by defining n-1 additional uncertain parameters which are
equal to the parameler being raised to the nth power. For this example,
2 new uncertain parameter, py’ = p;, could be defined and p,2 would
then be replaced by pop,’.

, The uncertainty modeling problem consists of three
components: scaling of the uncertain parameters, extraction of the
uncertainties from the nominal system, and formulation of a linear
fractional transformation (LFT) (see [5], Doyle, et. al., 1991 for a
review of LFT's). These components are reviewed below.

Uncertainty Scaling:

Each uncertain parameter p; in p can be bounded by an upper
bound, Pmax;. and a lower bound, ppin;, as follows:

Pminj S Pi S Pmax; @

Then the parameter can be written in terms of some nominal value
within this range of uncertainty. One way to do this is shown below:

m:anni+_5-i=Pnomi+sisi )
pnm=P_““;”';%;’Eﬂ‘i ()
si:&“ﬁ%’ﬂ‘ﬂi )
1§1<1 ®)

Equations (4) - (7) can also be written in vector form by stacking each
associated parameter quantity into vectors. The & terms as defined in
equations (5) and (8) are the uncertain terms that will be separated into
the A matrix of Figure 1.

Uncertainty Extraction:

Using equation (5), the state space model of the uncertain
system given in (1) can be rewritten in compact form as follows:

X|_ x]_ X X
[y]_s(p)[u]-s(p""m)[u]+sA(8)[u] ®)
where;

&= [81.52v"'-5m] € R™ (10)

_ | AD) B(p| _

_ | A(Pnom) B{Pnom)
S(pnom) = o) D] (128
SuBy= [ Ax®) By®) ] 12
Ca(8) Da(®)

Separation of S(p) into nominal and uncertain parts, S(ppom) and
S(5), respectively, results in the exiraction of the uncertainties from
the nominal system.

uation (9) can be rewritten in the form of an upper (time
domain) LFT by defining an input vector, ua, and an cutput vector,
ya. associated with the uncertain part of the system as follows:

Ya=Puus + Pio[X] a3)
[;] = Pyu, + Pzz[:] 14)
Uy = Ay, 15
AS) = diag11, 5212, Sralm) (163)
A(5) € R1axna (16b)

Ny = i r; .1 = dim{) Qa7

iml
where Ppi1, P12, P21, and P22 are constant matrices with P2 =
S(pnom), and the matrices P11, P12, and P2 are related to S5(8). The
I; terms in equation (16a) represent the identity matrix with dimension
equal to the repeatedness of parameter &. For example, the squared
uncertain parameter of equation (3), i.e. p22, results (after scaling) in
the term &,2. Thus, this example would require that both 8, and 8,' =
&, (associated with the uncertain parameter p;' discussed above)

appear in A, which means that I, in equation (16a) would be a 2-
dimensional identity matrix.

The objective of the uncertainty modeling problem is to find the
matrices Py, P13, and P2; such that the system of equations
represented by (13) - (16) is equivalent to the system represented by
equation (9). To do this, equations (13) - (15) are combined such that
up and y, are eliminated, as follows:

3] pa s pua-s@p'a@ra( 2] a9

Thus, the uncertainty modeling problem can be thought of as a multi-
dimensional (minimal) realization problem defined by the following
equation:

Sa(8) = Py( - A(B)P11)! AB)Py2 a9

where 8 represents the uncertain parameter vector defined in equation
10).

2.2 Summary of Results for Linear Parametric
U {01

As indicated previously in this paper, uncertainty modeling
results have primarily focused on the special uncertainty case involving
multiple uncertain parameters that enter the system model linearly.
Results for this case were first presented by [8] (Morton & McAfoos,
1985), and involve solving equation (19) with Pj; = 0. For this case,
P21 and Pj2 can easily be found by expanding SA(8) as a linear

combination of the §; terms, and decomposing the resulting coefficient
matrices. If any of the coefficient matrices has rank greater than onc,
then the associated §; term must be repeated in A a corresponding
number of times in order to perform the decomposition. For example,

if the coefficient matrix for §; is rank 2, then §; must appear twice in
the A matrix. This is also discussed in [9] (Morton, 1985).

2.3 Specific Problem Definition for this Paper:
Mol b U Al

In this paper, we consider the case of multiple uncertain

eters which enter any element of the system described in equation

(1) in 2 multilinear manner. It should be noted that rational multivariate

elements involving only one denominator term can be represented in a
multilinear form directly. For example,

188
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P1+ P2t + P22P3

Ay =

P13
(212)
=P+ PipPiso+ Pipd
where:
s -1 5 =1
1597 P (21b)
The general multivariate rational inty case containing multiple

uncertain terms in the denominator (defined in Section 2.1) could be
redefined. For example, an uncertain model element represented by
equation (3) could be approximated in a multilinear form as follows:

i _ 1+ o+
AP = T rape
. (200)
= PaPr+P22%+P2P3)
where:
P4 = 5ips + a1 Ps (200)

Thus, in this formulation the fourth uncertain parametes, Pa, is
dependent on the uncertain paramelers py. p3. and p4. This approach
therefore poses a slight resiriction to the general case. However,a
brief discussion of a technigue for formulating the rational problem in
such a way that the multilinear solution framework can be used is
presented in Section 5.

2.4 Formal Problem Statement

A formal problem statement based on the above discussion can
be summarized as follows:

Given: An uncertain system in state space form as in equation (1),
ie:

x€ R, ue R™
y€ R™

x = A(p)x + B(p)u,
y = C@x + DPu,

which can be rewritten as in equation (9), i.e.:

(2] - so2] = s3] + 50}]

Flod: The matrices P2), P12, and Pyy such that the above system can
be expressed as in equations (13-16), i.e.

ya=Puuy + Plz[":]

[;] =Pju, + Pn[:]

u, = AB) ya

A(S) = dils( 8111- 8212- <o+ Omlm)

A detailed discussion of a solution to this problem for uncettainties
which are represented within a multilinear framework, as discussed
above, will be presented in the next section.

3. Parametric Uncertainty Modeling:
A Multili Problem Solut]

3.1 Multilinear Solution Framework

As indicated in Section 2, the solution to the uncertainty
modeling problem posed above involves finding the matrices P21, P12,

and Py such that the Sa(5) matrices given by (12) and (19) are equal,
ie:
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[ As®) Ba®
s = | M@ Ac)]

L CA(S) DA(S)

Py (1 - AG)P1) ! AG)P12 22)

[ P21,
= }(1 - A®P1)T A [ Pra, Pra, ]

L ley

where the Aa(3), Ba(8). Ca(8), and Da(8) terms in equation (22) are
formed by scaling the uncertain parameters p and extracting the
uncertain 5 terms from the nominal system, as discussed in Section 2,
and P2 and Py are partitioned appropriately. Thus, the matrices
Aa(B), Ba(®), Ca(d), and Da(5) are known matrix functions of the ]

eters, and the matrices P, P12, and Py are the unknown matrix
variables for which equation (22) is solved. This section presents the
main result of the paper - namely a solution to the above problem for
uncertainties that are represented within the multilinear framework
described in Section 2.3.

As stated above, the solution to this problem involves solving
equation (22) for P2y, P12, and Pyy. However, the inversion of the
quantity ( T - A(8) P11 ) in equation (22) for multiple parameter
problems can become very cumbersome because Py is of the same
dimension as A(8), and the inversion has to be performed
symbolically. Moreover, each element of P1; must be determined such
that equation (22) is satisfied. Within the muliilinear framework,
however, this quantity can be replaced by a finite series. To see this,
consider the matrix equation:

I-AM = (@-A)A+A+A2+ A3+ ..+ AW

which can be written for any mairix A. Assuming that the matrix
(I- A)isinvertible, ﬂ\isequaﬁonunbenwﬁnmu:

(I-A)-l(I-An+1)=x+A+A2+A3+...+An'

If matrix A is structured such that A™*1= 0 (i.c., A is nilpotent) ,
then:

A-Ay1 = T+A+AZ+ A3+ .. +A°
This development is similar to the Neuman series ¢; developed
in [6] (Halmos, 1974) for a matrix A such that | A It < 1. For our
problem, however, A = A(5) Py1, where A(8) is a diagonal matrix and
Py; is unknown. Although A(5) is norm-bounded by unity, P11 is not

norm-bounded. However, since Py is to be determined, requiring P11
to be structured such that:

A@ Py =0

@- AG) P! =1+(A() Piy) + (AG) Py
L Hed (AG) Py
Substituting this into equation (22) results in:
Ax® Ba® ]
Ca(8) Da®

@3

"yields:

@9

Sa®) = [ @3

= Py [T1+A(8)P11 HA(B)P, 1)2+-~~*(A(5)?1 1)18(5)Py2
which can be rewritten as:
5a(8) = PnA@®)P +
PulAG)PL+HA®) Pi)’+...

(AGP1)1AG)P12 Q6)



The first term on the right side of equation (26) represents the linear
uncertain components of S(5), and the second term adds in the
nonlinear terms. Furthermore, since the nonlinear terms of 5a(8)

consist of cross terms and nth-order terms (which can be represented as
cross terms), the order, 1, of the highest term in the series of equation
(26) is defined by the highest cross term order required to realize

Sa(5). Thus, r is defined by the order of the highest cross-term
occurring in Ax(8), Ba(8), Ca(8), and Dy (3), ie.:

r = max(0Oa.0B.0c. OD) (279)

" and Oy, Op. Oc. and Op represent the order of the highest-order
cross-product term in AA(8), B,(5), C4(8). and D,(3), respectively.

That is, for a general uncertain mxn matrix M:

oM = max[order(mij);fonlli= 1.2,..m
andj=12...1n] (27b)

where the order of each mj; is the order of its highest-order cross-

product term, and cross-| t term order is defined as:
order (8) 8283...8) =i-1
fori=1,2,...,na. 27c)

Thus, the maximum value of r is Tyax = Na-1, where ny is the
dimension of the A matrix and is given by equation (17). The nilpotent

requirement of equation (23) for (A(8) P11) can be satisfied if the
clements of Py, pj;, satisfy the following structure:

1) pi=0; i=1,2,...,na

2) If p;#0, thenfor
i=l.5.....nA and j=1,2,...,0a°
o) pji =0

b) Piorje1 =0 of Pignjez =0 or
- OF Pig(n,-1)j@ny-1) = 0
(28)
where the symbol "®" represents "modulo n,"addition [7] (Horowitz
and Sahni, 1978) over the set {1,2,...,na},ie.:

_fa+b if a+bs<n,
18b= a+b-n, if a+b>n,

1<agny, 1Sb €<ny

and n, is the dimension of A (and, hence, P11) as defined in equnlion
(17). It should be noted that requiring Py to satisfy the conditions of
(28) does not impose a restriction in solving the uncertainty modeling
problem, but rather it is a means of removing unnecessary freedom in
determining Py based on the uncertain system being modeled. Thus,
(28) assists in the process of solving for Py.

Using this multilinear framework, P2) and P2 can be found
using the linear uncertain terms of S5(8), and Py can be found using

the nonlinear terms of SA(8) such that the conditions of (28) are
satisfied. Thus, the procedure presented in [8] (Morton & McAfoos,
1985) (and briefly described in Section 2.2) for obtaining an
uncertainty model for multiple linear uncertain parameters can be used
to obtain P;; and P12, and these matrices can be used in the second
right-hand term of equation (26) so that P} can be determined directly
using equations (26) and (28). Details of the ure for doing this
are presented in [1] and {2} (Belcastro, et. al., 1989 and 1991), and an
exar;lple problem is presented in Section 4 which demonstrates these
results.

3.2 Uncertainty Modeling Procedure

Obviously, in order to reduce computational complexity in
robust control system analysis and design, it is desired to obtain an
uncertainty model of minimal dimension. As discussed in [1] and [2]

(Belcastro et. al., 1989 and 1991), the dimension of the uncertainty
model is dependent on the system state space realization. These p:
address the problem of obtaining a state space realization of an
uncertain single-input single-output (SISO) system (given its transfer
function) such that an uncertainty model of minimal dimension can be
determined. For practical multivariable applications, however, it is
usually desired to retain physical relevance lo the blem being
considered in assigning the states of the system, so that a particular
state space realization may be preferred. Therefore, given a desired
state space model of an uncertain system, one would like to be able to
determine a minimal uncertainty model for this particular realization -
which may or may not be an overall minimal uncertainty model for the
system. A procedure 1o obtain a minimal (or near minimal) uncertainty
model relative to a particular state space realization (based on the
multilinear framework presented in Section 3.2) is therefore given in
this section.

Given & state space realization of an uncertain system whose
matrix elements are multilinear functions of the uncertain parameters of
the system, it is desired to obtain an uncertainty model of the form of
Figure 1, which has a minimal (or near minimal) number of repeated
parameters in A. This can be done using the following approach:

1. Define a A matrix of the form of equation (16) which has only
those repeated uncertain parameers necessary to realize the nth-
order uncertain terms in the model, as discussed in Section 2.1.

2. Follow the procedure fiven in [8] Morton & McAfoos, 1985)
and [9] (Morton, 1985) for the linear uncertain parameter case
to obtain P;; and Py using equations (22) and (26). If
problems with rank occur in defining P2y and Py2, go back to
step 1 and add a repeated parameter to 4, as described in
Section 2.2.

3. Once P;; and Py7 have been obtained, use the nonlinear
uncertain terms in equations (22) and (26) to obtain Py such
that the conditions of (28) and, hence, equation (23) are
satisfied. If Py1 cannot be determined such that all of these
equations and conditions are satisfied, the dimension of 4 is not
large enough. If this occurs, it must be determined which
parameter must be repeated (based on the specific problem
encountered in trying to satisfy the above equations), and the
process begins again at siep 1 with the repeated parameter being
added to the A matrix. Once Pj; has been successfully
determined such that all equations and conditions are satisfied,
the minimal (or near minimal) uncertainty model for the given
state space realization of the system has been determined, and
equations (13) - (16) can be used to model the uncertain system
as depicted in Figure 1.

It should be noted that the above procedure yields a minimal (or near
minimal) uncertainty model by construction, since the initial A matrix
defined in step 1 is of the smallest possible dimension required o
model the given system, and additional parameters are added to this 4
matrix in steps 2 and 3 only if required. An example problem
illustrating the above procedure is presented in Section 4.

4. Example

Consider the third-order multivariable system described in state
space form as in equation (1) by the following realization:

A/
- 0 0
L,
0

AQp) = _ z_’: 0 (292)

E
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v,
B@) = 0 -3 (29%)
o =E
_[100 _[0o0
c(p)‘[001]' l)(")'[oo (2%)

where the uncertain parameters Ly, Lw. Oy, and Gy vary over the
following ranges:

1057 S Ly < 8411 (30)
104 S Ly S 7955 (30b)
574 < oy S 9.69 (30c)
395 < ow S 134 (30d)

The elements of equation (29) can be expressed as multilinear functions
of the uncertain parameters as follows: .

-vi. 0 0
AP)= 0 -v.L, 0

L v

[ T2/ 0
Gu]-u‘\/x;
0

-vi.i-L
VL1 1,3) (31b)

B

(31a)

| 0

(100 100
C(p)-[ H ] D(p)-[00 G10)
" i W S

L¢=I -L'=I (32)

001189 < T, <.009461, 0013 < L, <.00962

The first step is to extract the uncertain 8 terms from the nominal
system by scaling the uncertain parameters as in equation (5), as
follows:

o P R
Ty=lu+ 8= Lo + 3,

_ (33)
| Ga = Oy, +6,80, = Ou+ 8o,
so that, as in equation (12):
_[AGIB®]. . 5= Ax(®) Ba® ”
S@mnd =[S0 ¢ So® [c,@ o, 34)
where:

-V, 0 0
Apo) = 0 Vi 0 (350)
0 PR 7SS
oL/ 0
B(po) = 0 A %—) (35b)
0 w4 S
_[100 _[00
C(p")'[ool]'D(w'oo] (3)
V.5 0 0
Ay®) = 0 -Vb. O (364)
0 ‘A’v '2—;' - :ﬁ'.
bay/ % 0
By® = 0 - .(1_#)57_ (36b)
0 bu‘\/’z—;
co=[230] n-[38] oo
where: - _ _
‘Al = 20":]-‘".&;: T“'-&;' ‘_"_ﬁ:v-ﬁ-&h
+ OB+ Bondi @™
by, = 2008, + Loy + 2L
+0u 50, + 56,50 (37H)
by, = 20wI~,3L_+ f-.gg. :2"1—-.&.5«:.
+ OB + BB (370)

As can be seen by the last term in equation (37) (for either 24, bay, or
bay), r = 2 for this example problem (as defined by equation @n).

Since Sa(5) contains 2nd-order terms associated. with Ly and Lw.the d
terms associated with these variables will have to twice in A.
Thus, the dimension of A going into Step 1 of Section 3.2 is six. Fora
six-dimensional A, the matrices P7) and Pj2 can be determined, as
described in Step 2 of Section 3.2. However, it is impossible to obtain
a P;1 matrix which satisfies all of the equations discussed in Step 3 of
Section 3.2. Moreover, it is determined in that step that the & term
associated with Ly, must be repeated a third time. Therefore, when
steps 1 - 3 of Section 3.2 are ted, the resnltinf uncertainty model
can be expressed as in equations (13) - (16) and (22), where:

A = dingl &, 8, 5. 8. 8. Go &)

= diagl 8.2 8L.Js 8o, 8. ] (8)
d o, 0 0 00,0

Py,={ 0 0 -V, V, 000 (3%)
o 0o o0 o 10T,
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ley =[ g g ] (3%)

1
o ocs;\

Pya, =

;
IR
B

[~}

E

P12, =
(39d)

£
s

1
o
oz

—

]

8
FIP ec
RO P

(40a)

%
=]
O

© O ooc0o®
[ I R =T -

T

°°°‘oco
© o clooo
A - - -
o o

L

(40b)

and the nominal system matrices are given above in equation (35). It
should be noted that a certain amount of freedom exists in determining
the above matrices, so that an uncertainty model obtained for a given
uncertain system is not unique. It should also be noted that in the
above uncertainty model development, the scaling terms sp; were
incorporated into the model at the end so as to reduce the number of
symbolic terms involved in the determination of the P2y, Py2, and P13
matrices.

5. Extension to Rational Case

The above procedure for solving the multilinear uncertainty
modeling problem can in fact also be used to solve the more general

rational uncertainty modelin% problem. This is done by obtaining a
matrix fraction description of the uncertain system, and representing
the denominator matrix in a feedback loop 50 as to remove the inverse.
The numeralor and denominator matrices are then multivariate
polynomial matrices which can be concatcnaled to and modeled
using the multilinear techniques discussed above. s of this
approach will be presented in a subsequent paper.

6. Conclusions

has summarized previous results in parametric

This paper
esented and demonstrated an

uncertainty modeling, and has
important extension to thesc results. The extension consists of a
framework for modeling multiple parametric uncertainties which can be
represented in a multilinear functional form, and includes 1 procedure
for obtaining a minimal (or near minimal) uncertainty model relative to
a given stale space realization of the uncertain system. As discussed in
the paper, the multilinear framework can also be used 1o solve the more
general rational uncertain parameter case, and provides & mechanism
for significantly simplifying the computational complexity involved in
determining an uncertainty model for a given uncertain system. Thus,
many practical problems of interest can be solved within this
framework. To demonstrate the results of the paper, an example
problem was presented which consisted of a multivariable third-order
uncertain system with four uncertain parameters. A minimal (or near
minimal) uncertainty model was determined for the given stale space
realization of this system, and the resulting model had a dimension of
seven. Although two of the uncertain eters entered into the given
model as squared terms and as fractions, they were casily modeled
within the multilinear framework.

Further work being addressed in this area includes
evaluating/refining/generaliziing this modeling procedure for a wider
class of problems, automating the generalized modeling procedure, and
applying the procedure to practical application problems.
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